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ABSTRACT

The manufacturing sector is continuously reinventing itself by embracing 

opportunities offered by the industrial internet of things and big data, among other 

advances. Modern manufacturing platforms are defined by the quest for ever 

increasing automation along all aspects of the production cycle. Furthermore, in 

the next decades, research and industry are expected to develop a large variety 

of autonomous robots for a large variety of tasks and environments enabling future 

factories. This continuing pressure towards automation dictates that emergent 

technologies are leveraged in a manner that suits this purpose. These challenges 

can be addressed through the advanced methods such as [1] large-scale 

simulation, [2] system health monitoring sensors and [3] advanced computational 

technologies to establish a life-like digital manufacturing platform and capture, 

represent, predict, and control the dynamics of a live manufacturing cell in a future 

factory. 

Autonomy is a desirable quality for robots in manufacturing, particularly 

when the robot needs to act in real-world environments together with other 

agents, and when the environment changes in unpredictable or uncertain way. 

This dissertation research will focus on experimentally collecting sensor signals 

from force sensors, motor voltages, robot monitors and thermal cameras to 
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connect to such digital twin systems so that more accurate real-time plant 

descriptions can be collected and shared between stakeholders. Creating a future 

factory based on an Industrial Internet-of-Things (IIoT) platform, data-driven 

science and engineering solutions will help accelerating Smart Manufacturing 

Innovation. Besides, this study will examine the ways of sharing knowledge 

between robots, and between different subsystems of a single robot, and 

implement concepts for communicating knowledge that are machine logical and 

reliable. My work will focus on applying the proposed methodology on more diverse 

manufacturing tasks and materials flows, including collaboratively assembly jobs, 

visual inspection, and continuous movement tasks. These tasks will require higher-

dimensional information such as, analog plant signals, and machine vision 

feedback to be fed into and train the digital twin. 
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CHAPTER 1 

INTRODUCTION

1.1 PREAMBLE 

Industry 4.0 has become a synonym for a vision of future product creation 

and production engineering environments in which networks of horizontally and 

vertically integrated smart design and manufacturing systems will be the norm. 

With the Internet of Things (IoT) and its Cyber-Physical Systems as a backbone, 

game-changing new ways of product design and manufacturing in a hyper-

connected globalized world are emerging. In addition, a new and rapidly growing 

industrial service-sector focusing on Product-Service-Systems has begun to form. 

Some of the challenges in realizing the overall vison of Industry 4.0 concern the 

integration, management, control and communication of cyber-physical production 

engineering systems, the integration of state-of-the-art technology within the 

legacy systems, data security and broader cyber-security aspects, as well as 

national and international public policy issues (Figure 1.1, page 8). Lastly, given 

the profound impact of this so-called 4th Industrial Revolution on society, the 

changing landscape of tomorrow’s job market and hence the training and 

education of the next generation workforce need to be addressed as well. 
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Industries and engineering applications around the world are embracing the 

concept of Digital Industrial Transformation and Industry 4.0 to attain greater 

levels of business, asset, and product life management (PLM). This process allows 

for machines, systems, and users to be interconnected, which supports faster 

decision-making and less downtime. 

The future of manufacturing is reinventing itself by embracing the 

opportunities offered by digital transformation, industrial internet, cognitive 

automation, and artificial intelligence. Cyber-physical systems (CPSs) are looking 

to pursue the potential convergence of cyber architectures, physical manufacturing 

processes, and control intelligence. In this section, the authors introduce a novel 

cyber-physical infrastructure enabled by these technological elements, followed by 

proposing to utilize a machine vision system to aid general manufacturing event 

understandings. 

This work demonstrates a cyber-physical system of a five-robot assembly 

line. Collaborative robots from Yaskawa Motoman are controlled by a safety-

enabled Siemens S7-1516F PLC system. Industrial sensors and vision systems are 

embedded as smart devices to monitor the process indicators and device health 

states during machine operations. The cyber infrastructure is constructed based 

on a Siemens virtual commissioning solution, Process Simulate, which 

accommodates a high-fidelity simulation-based digital twin for the physical 

assembly line. Industrial implementations of robotic production lines are widely 

adopted to automate specific manual processes to further meet the manufacturing 
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requirements in sterility, precision, or workload capacity. However, the needs to 

adaptively change the robot action sequences in dynamic work cells have drawn 

the attention of manufacturing practitioners, as expected and unexpected 

incidents can and do occur during the processes. Such adaptivity requires reliable, 

precise, and prompt manufacturing event-understanding by machines. Hence, this 

work proposes to develop a deployable system connecting the cyber and physical 

world. The synchronized results from multiple sources are expected to aid the 

machine event-understandings along with the signals from conventional industrial 

sensors. One goal of this project is to use a sensor array to create real time feel 

and control of the robotic cell. The system will be designed to either alert human 

or AI monitors of the manufacturing cell of any inefficiencies, allowing them to 

analyze the system to find and remedy the source of error. The other goal for this 

project will be to integrate the data collected by the sensors into the Digital Twin 

of the robotic cell. 

This integration of real-world data and computer simulations has a 

widespread current and future application in prognostics and health management. 

Furthermore, it could be very useful in terms of accurately modeling and predicting 

damage to systems, which would enhance safety. In addition, used technologies 

are a viable alternative to current shortcomings of robotic resource management 

and sustainment. 

The objective of this work is to develop an industrial system for smart 

manufacturing control system in both virtual and physical spaces. Based on current 



www.manaraa.com

 

4 

large-scale simulation, sensor and computation technologies, the method to 

pursue this is to establish a life-like digital manufacturing platform and capture, 

represent and predict the dynamics of a live manufacturing cell. 

1.2 HISTORICAL PERSPECTIVE 

Historians have reported a succession of Industrial revolutions starting in 

the 18th century. These industrial events were driven by new technologies and 

systematically resulted in wholesale disruptions and transformations in industrial 

processes, manufacturing methodologies, business models and the organization of 

capital and labor. They are usually frames-of-reference for the intersection of 

events and emergent technologies that often led to marked shifts in productivity, 

Industry and society. These shifts have often resulted not only in global 

reorganization of the means of production but also in remarkable changes to the 

socio-political, cultural and economic fortunes of nations. Industry watchers have 

identified four different industrial revolutions, though there are early 

contemplations about a fifth industrial revolution. 

The 1st Industrial revolution (Industry 1.0) occurred within the 18th 

century, spanning the period 1760 and 1840, circa. It welcomed mechanized 

production using coal resulting in the transition from muscle power to mechanical 

power. It was triggered by the invention of the stream engine, hydropower and 

the emergence of the railroad construction industry. The major contribution of this 

era was improved efficiency. The second industrial revolution (Industry 2.0) 
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started in the late 19th century but continued through the early 20th century. It 

enabled mass production after the arrival of electric power and the advent of the 

assembly line enabling the mass production of goods and kick-starting the era of 

automation. The third Industrial revolution (otherwise known as the computer or 

digital revolution) began in the middle of the 20th century (1960, circa). It made 

automated production possible using machine control and robots. Electronics and 

information technology were key technologies of this era. Other key elements of 

this period include the rise of computer networks, the emergence of the Internet 

and the arrival of robots. Last but not least, the fourth industrial revolution would 

involve the representation of physical objects in highly interactive virtual 

information networks, where the boundaries between the physical and virtual 

worlds continue to blur. This era spurred a jump from a reliance on the client-

server model to ubiquitous mobility that has catalyzed the growth smart things. 

Other remarkable elements of this era include the growth of exponential 

technologies like artificial intelligence (AI), Blockchain, Big data and analytics, 

augmented and virtual reality (AR, VR), robotics etc. Industry 4.0 is a construct of 

the fourth industrial revolution that seeks to bringing together the various 

conceptual elements that will frame the transformation that is expected to occur 

due to the collision of these technologies and events. The Future Factory would 

be one of many outcomes of this construct. 
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1.2.1 The rise of computers  

The embrace of information technology began in the 1950’s. Researchers 

from that period through the 1980’s often stated that an old era was ending and 

a new era was beginning, and that this was due to computers [38][55][75]. 

Computer use in manufacturing began with numerical control (NC)– the feeding 

of step-by-step, pre-programmed instructions to a machine that translated the 

instructions into movements to perform subtractive manufacturing, usually milling 

or turning. NC was first proposed in the 1940’s by John Parsons who worked in 

aircraft manufacturing. He proposed the idea to Wright-Patterson AFB, who then 

commissioned development from MIT. When the first commercial machines were 

available in 1955, they were controlled by paper or magnetic tape bearing the 

instructions. The tapes began to be replaced in the late 1960’s by central computer 

control. Central control expanded NC to allow multiple machine control and closed-

loop control where the machines were able to report status to the controlling 

computer [38]. 

The development of simulation programs to design and predict 

manufacturing processes began in the late 1970’s [49][75][83]. Programs were 

designed to evaluate systems before implementation, monitor systems in 

operation, and collect data of the results. Models of dynamic changes during 

operation, such as tool wear, were developed to better simulate operations. One 

author noted that the industrial age is mature and “approaching seniority,” arguing 

that computer control and artificial intelligence are needed to compete in the new 
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global marketplace [56]. Closed-loop numerical control combined with computer 

simulation has led to smart manufacturing and the beginnings of digital twins and 

virtual commissioning. 

1.3 DOCUMENT ORGANIZATION 

In this work, a novel approach is proposed to establish continuous 

interfaces with a virtual environment accommodated by industrial computer-aided 

applications to overcome production bottlenecks towards data-driven digital 

manufacturing systems. The proposed method to pursue is based on current 

virtual commissioning applications is to employ large-scale simulations, prompt 

system indicators, and computation technologies to establish a life-like digital 

manufacturing platform, where dynamics of live manufacturing cells can be 

captured, represented, predicted, and controlled. 

The document is organized as follow: Chapter 2 provides a review of 

existing research topics on digital transformation in production systems. Chapter 

3 introduces the system environment; the virtual cell and its capability to simulate 

manufacturing problems. It will also present the interfaces between the systems 

and demonstrates near Realtime communications using the implemented 

interfaces. Sections 3.1 and 3.2 present some primary training results with a 

specific case study on gripper health monitoring and robot health mounting and 

deterioration. The last Section 7 concludes the main contributions of this work and 

proposes future research directions. 
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Figure 1.1: The Challenges of Implementing Industry 4.0 
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CHAPTER 2 

LITERATURE REVIEW

This literature review will be divided into three main sections, with the first 

section focusing on a background literature on industry 4.0 and digital 

transformation putting things in perspective. It is more than just a chronology but 

focuses more on recent usage and difference implantations of the digital 

transformation philosophy. The next two sections will focus on more relevant 

question related to the specific topic of my dissertation: robot autonomy, and robot 

failure.  

2.1 LITERATURE ON INDUSTRY 4.0 AND DIGITAL TRANSFORMATION 

Industries and engineering applications around the world are embracing the 

concept of Digital Industrial Transformation and Industry 4.0 to attain greater 

levels of business, asset, and product life management (PLM). This process allows 

for machines, systems, and users to be interconnected, which supports faster 

decision-making and less downtime. 

This literature will look at the state of digital transformation in the last 

decade using a systematic literature review approach. This method will help 

characterize digital transformation and its employment in industry. This chapter 
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will also provide evidence of benefits and challenges encountered while 

implementing digital transformation methods. A systematic literature review has 

commonly been recognized as a more thorough, effective, repeatable, and less 

subjective form of literature review that leads to evidence-based conclusions. In 

this framework, the term “evidence” is accepted as the synthesis of scientific 

studies and papers with preeminent substance on the specific topic of digital 

transformation, defined by the following focused research questions: 

RQ1. What is digital transformation? How is it implemented in industry? 

RQ2. What are the key technology drivers of digital transformation in 

industry? 

RQ3. What empirical evidence is there concerning the benefits and impact of 

digital transformation? 

RQ4. What empirical evidence is there concerning challenges and how to 

overcome them? 

RQ5. What role does culture play in digital transformation? 

The purpose of this chapter is to review the prominence of digital 

transformation in the last decade. In section two, we describe the methodology 

used to develop the systematic literature review. In section three, we will be 

present and interpret the findings and evidence to the proposed research 

questions. And finally, section four will include the concluding remarks, limitations, 

and recommendations. 
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2.1.1 Methodology of Systematic Review 

The systematic review fulfills the requirement for scholars to review and 

summarize all obtainable evidence and data about some phenomenon (“Digital 

Transformation”) in a comprehensive and objective approach. Implementing a 

systematic review consist of three distinct stages: (a) planning; (b) conducting the 

review; and (c) reporting the review [54]. This systematic literature review will be 

structured following guidelines and recommendations recommended by 

Kitchenham et al. (2004) [54], and Moher et al. (2009) [80]. 

The main step in the planning stage is the development of a review protocol 

which specifies all methods needed to undertake the review. The main advantage 

of building such protocols is to reduce the possibility of scholar subjectivity and 

favoritism. 

 Formulation of research questions 

The formulation of the right research questions is a key step in developing 

the review protocol. We sought to cover all aspects of our research with the 

questions RQ1 – RQ5 listed above. The first research question (RQ1) is a wide-

ranging question that will help define digital transformation and its application in 

industrial settings. The second question (RQ2) will help us recognize the key 

technological drivers of digital transformation in industry, (3) its benefits and 

impact, (4) its challenges, and (5) the role of culture in its advancement. The aim 

of this study is to answer these research questions. 
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 Search and Assessment Strategies 

Three electronic databases and research engines (Web of Science, Science 

Direct, and Google Scholar) were used to conduct the search and identify qualified 

studies. The search was limited to data published in the English language. The 

searches were conducted using synonyms or alternative expressions and 

combinations of these search terms: “digital transformation”, “digital thread”, 

“industry 4.0”, “implementation”, “key drivers”, “benefits”, “impact”, “challenges”, 

and “cultural adjustment”. The combinations were created using Boolean 

operators (AND and OR). Reference lists of qualified studies were examined for 

other relevant citations. 

After collecting prospective studies through the search process, a primary 

selection of articles based on titles and abstracts was conducted. Irrelevant articles 

were disregarded, and a deeper read of the selected ones was concluded. After 

reading and evaluating the nominated articles, another set of irrelevant papers 

was omitted, leaving a total of 85 articles to analyze. The next step was to conduct 

the review and present the results. 

2.1.2 Findings and Presentation 

A total of 85 papers were considered significant for this systematic literature 

review. Table 2.1 (page 46) shows the distribution of articles among various 

journals The International Journal of Production Research has the largest share of 

relevant articles. Figure 2.1 (page 47) depicts the distribution of articles by time 
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of publication. Twenty-two articles (40%) were published in the years 2016 and 

2017. 

The data extracted from these articles is represented and interpreted below 

in the form of answers for our research questions. 

 RQ1. What is digital transformation? How is it implemented in industry? 

The notion of digital transformation first started appearing in literature 

around 1968 in the fields of nuclear spectroscopy [121], and computer analysis of 

microscopic images [78]. However, this concept has evolved since then. Digital 

transformation is the integration and use of digital technologies into business and 

industrial processes to enable major improvements [30][69], fundamentally 

altering traditional ways of doing business and manufacturing by redefining 

capabilities, processes and relationships [71] It is concerned with the changes 

digital technologies can bring about in a company’s business model, which result 

in changed products or organizational structures or in the automation of processes 

[40]. DT is realigning technologies and new business models to more effectively 

engage digital customers at every touchpoint in the customer experience life cycle 

[111]. Research on successful digital transformation is currently limited to 

identifying trends that show improved capabilities, and to the growing accessibility 

of electronic data to enrich products, services and customer relationships [113].  

Industry 4.0, the implementation of digital transformation in industry, is the 

vision of a highly integrated smart factory, in which discrete products are mass 
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produced sustainably to fulfil consumer demand in global competition [133]. The 

technological building blocks that are considered indispensable for Industry 4.0 

are cyber-physical systems (CPS) and the internet of things (IoT) [13][41][67]. 

Industry 4.0, or smart manufacturing, primarily focuses on the end-to-end 

digitization and the integration of digital industrial ecosystems by seeking 

completely integrated solutions [136], and is characterized by connectivity, 

automation, digitalization and decentralization [41]. Most prominently, Germany 

has legislated and enacted its “Industrie 4.0” program, which is progressively 

affecting European policy and course of action, while the United States focuses on 

smart manufacturing [126]. 

Zhong et al. (2017) notes that the terms smart manufacturing and Industry 

4.0 become synonymous today [143]. While machine tools have used computer 

control and networking for half a century, as noted in the historical perspective, 

smart manufacturing is distinct in the scale of data, controls, and connectivity in 

use and by the use of data to continually alter or refine a manufacturing process 

and throughout the supply chain [143]. Davis et al. (2012) defines smart 

manufacturing as the use of intense networked information throughout a supply 

chain [20]. Toa et al. (2018) defines the goal of smart manufacturing as being 

able to “convert data acquired across the product lifecycle into manufacturing 

intelligence in order to yield positive impacts on all aspects of manufacturing” 

[125].  Smart manufacturing is also characterized by the wide use of internet of 
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things (IOT)-enabled devices, cloud computing, cyber-physical systems (CPS), big 

data analysis (BDA), and information and communications technology (ICT) [143].  

Zhong et al. (2017), Cheng et al. (2018), Grieves (2005), Kusiak (2017), 

and Tao et al. (2018) discuss the challenge of creating a generic smart 

manufacturing framework to include design, machines, monitoring, control, and 

scheduling [15][34][58][125][143]. Using the large amounts of data created in 

smart manufacturing will require new algorithms and possibly artificial intelligence 

[1][130]. Alcacer and Cruz-Machado (2019) stated that companies will need to 

develop cybersecurity measures for data sharing along supply chains. The industry 

is vulnerable due to infrequent security updates, old devices, and multiple data 

pathways. They also note that Industry 4.0 data is uniquely valuable [1]. 

Davis et al. (2012) states that smart manufacturing leads to a dramatic 

change in the business structure due to increased responses to demand and 

product design changes. As a real-time ‘understanding, reasoning, planning, and 

management’ tool, smart manufacturing needs sensor based analytics, modeling, 

and simulation [20]. Current examples of smart manufacturing exist at Proctor and 

Gamble and Tata Motors. P&G uses production simulation to help plan bottle 

design. 
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 RQ2. What are the key technology drivers of digital transformation in 

industry? 

Many technological drivers are key in the development of a digital 

transformation plan (Figure 2.2, page 48). These key drivers are summarized 

below.  

2.1.2.2.1 Cyber Physical Systems 

The term cyber-physical systems (CPS) denotes a new cohort of systems 

with integrated computational and physical capabilities that can interact with 

humans through many new modalities [4]. A Cyber-Physical System embeds 

computers and networks that monitor and control the physical processes, usually 

with feedback loops where physical processes affect computations and vice-versa 

[62]. Thus, cyber-physical systems are real-time systems [115]. Many challenges 

have been identified during the implementation of CPS. These challenges can be 

clustered into six major areas: (1) CPS Capabilities, (2) CPS Management, (3) CPS 

Engineering, (4) CPS Ecosystems, (5) CPS Infrastructures, and (6) CPS Information 

Systems [65]. 

2.1.2.2.2 Industrial Internet of Things 

The Internet of Things (IoT) is a network of physical “things” (objects) that 

are digitally connected and can sense, monitor, and interact within a business and 

between the business and its supply chain [9]. IoT allows information to be timely 
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and accurately collected and transferred through the network [92]. This enables 

agility, visibility, tracking, and data/info sharing to expedite well-timed planning, 

control and coordination. The cyber-physical system (CPS) network can act to 

connect people, “things” and physical processes over the IoT network [17]. 

The Industrial Internet of Things (IIoT) is the application of IoT in the 

manufacturing industry [53]. IIOT has resulted from the convergence of industrial 

technologies and IP-enabled low-power wireless networking technologies [24]. 

IIOT is principally concerned with communication and inter-connection between 

machines (M2M) and things [31]. 

2.1.2.2.3 Digital Twin 

Industry and academia describe digital twins in many diverse ways [29]; 

however, it is commonly accepted that a digital twin is an integrated multi-physics, 

multi-scale probabilistic ultra-realistic simulation of systems or products which can 

reflect the lifecycle of its parallel twin using existing physical models, history data, 

and real time data [32]. Rosen et al. state the digital twin is the model which can 

interact amid autonomous system behaviors and the environment in the physical 

domain [99]. Therefore, the digital twin is developed and established in 

conjunction with its physical twin and remains its virtual counter-part through the 

whole product lifespan; including the properties, condition and performance of the 

real-life object through models and data [36].  
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The first use of digital twins was for airplanes and the aerospace industry. 

Tuegel et al. (2011) and Glaessgen and Stargel (2012) describe this use of digital 

twins of individual aircraft rather than of manufacturing processes [128][33]. The 

digital twin they describe will be updated with data from the actual aircraft to help 

improve lifespan and maintenance predictions using big data analysis. Tuegel 

describes the challenge of multi-physics modeling where solution methods of 

different stressors, such as temperature and physical forces, are modeled 

together. Glaessgen and Stargel state that current predictions for maintenance 

intervals and analysis of damages are based on heuristics, factors of safety, and 

similitude, among others. The accuracy of these methods is based on previous 

experience and experimentation. However, since each aircraft and damage 

incident are unique, the predictions and analyses must be conservative, leading to 

the use of extra weight and materials. The digital twin would be linked to the real 

aircraft through on-board sensors to increase safety and reliability. Kritzinger et al. 

(2018) describe two variations of the digital twin based on the flow and direction 

of data transfer [57]. The Digital Model is an informational model of the physical 

system, but without any data interchange. The Digital Shadow is an informational 

model that is updated by changes to the physical system, but which does not 

influence the physical system.  

While the digital twin was at first descriptive, it is now actionable and will 

allow the user to design and test the virtual version to discover manufacturability 

and modes of failure [35]. The digital twin is defined as an ultra-high-fidelity 
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simulation by Alcacer and Cruz-Machado (2019) [1]. They note its importance to 

Industry 4.0 through simulation to all product lifecycle phases and through the 

inclusion of real-life data. Similarly, Tao et al. (2018) defines digital twins as the 

ultra-high synchronization between the physical product and digital twin, which 

includes multi-physics modeling [124]. Greives (2005) argues that digital twins are 

needed for additive manufacturing development since design in that field is more 

iterative [35]. As described by Padovan et al. (2019), the digital twin can also be 

used for knowledge as a service [85]. The service would act as an online help 

service based on a digital twin with historical and real time data. They developed 

a ‘knowledge navigator’ for tutoring, what-if scenarios, and augmented assistance 

using QR codes for diagnostics. 

Greives (2005) argues that digital twins can replace physical resources that 

are currently wasted such as energy, materials, and time [35]. The simulation of 

manufacturing can reduce trial and error. He argues that digital twins would allow 

operators to “front-run” a system to see how an unusual situation may develop, 

and that this ability could have helped avoid disasters such as the BP oil spill and 

Chernobyl.  

Finally, Greives (2005) notes issues including simulating physical laws and 

re-integrating the solution back into the digital twin [35]. Solution methods often 

require abstraction; the loss of detail may make it difficult to update the original 

digital twin’s state. 
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Lee and Park (2014) stated the virtual device models needed in virtual 

commissioning require a geometric and kinetic model, as well as a logical model 

[61]. The geometric and kinetic models are generally built in CAD software, and 

this methodology is relatively well understood. Several methods have been 

proposed to create error-free logical models. These logical models should follow 

the input/output architecture of the real devices, commonly expressed in PLC 

ladder-logic programming. Since the mechanical, electrical, and controls engineers 

who work on the systems do not have thorough understandings of each type of 

model, new methodologies to help each type of engineer should be developed. 

2.1.2.2.4 Digital Factory and Digital Ecosystems 

The digital factory is defined as a system of digital models, methods, and 

tools, which are integrated by a data management system [135]. The objective of 

a digital factory is to secure products and processes during the primary phase of 

development and likewise to accompany the advancement of products and 

production processes with the use of digital models and simulations [12]. Hence, 

the key purpose of the digital factory is to support the planning process with a 

series of tools, such as 3D modelling programs or simulation programs [145]. 

Digital ecosystems are networked architectures and collaborative 

environments that address the weakness of client-server, peer-to-peer, grid, and 

web services [11]. A digital ecosystem generates a digital environment for 

networked groups to support teamwork, the knowledge sharing, and the 
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development of open and adaptive technologies [129]. A digital ecosystem is 

inhabited by ‘‘digital components’’ which evolve and adjust to local conditions 

thanks to the re-combination and evolution similar to biological ecosystems [114]. 

Digital components can be software components, applications, services, 

knowledge, business processes and models, training modules, contractual 

frameworks, and law [129]. 

2.1.2.2.5 Smart Factory 

A Smart Factory is a manufacturing solution that delivers flexible and 

adaptive production processes. A smart factory will resolve issues rising in a 

production facility that has dynamic and fast changing boundary conditions and 

operates in a world of growing complexity [94]. The smart factory is necessary to 

attain advanced manufacturing benefits based on network technologies and 

manufacturing data [14]. In the smart factory, the digital factory should be 

integrated with its real-time data, inferred statistics and information [116]. 

2.1.2.2.6 VR/AR/MR 

Virtual Reality (VR) can be defined as a synthetic or artificial environment 

which provides a person a sense of reality and an impression of “being there.” It 

has been gradually employed in numerous applications in design and 

manufacturing such as computer-aided design, robotics, assembly planning, and 

manufacturing system visualization [27]. Virtual reality is a prevailing and 
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influential instrument that can be used to mimic and simulate real-life scenarios 

that are either expensive or challenging to conduct in live exercises [118]. 

The term Augmented Reality (AR) is often used to denote interfaces in 

which two and three-dimensional computer graphics are overlaid above physical 

objects or stations, usually viewed through head-mounted or handheld displays 

[10]. Promising AR applications have been created in several fields such as military 

training, surgery, show business, maintenance, assembly, product design and 

other manufacturing operations [84]. AR can deliver a seamless interface that 

bridges the gap between the real and virtual worlds and enhances the connections 

between the users and the smart environment [131]. AR in assembly guidance can 

help increase assembly efficiency, and as a result lower the overhead for each 

product [142]. 

Mixed Reality (MR) is the combination of a purely physical (or “real”) 

environment and a purely virtual environment [42]. 

2.1.2.2.7 Cloud Computing 

Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources 

(e.g., networks, servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction [42][77]. The cloud model is composed of:  
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 Five essential characteristics: on-demand self-service, broad network 

access, resource pooling, rapid elasticity, measured service 

 Three service models: software as a service, platform as a service, and 

infrastructure as a service  

 Four deployment models: private cloud, community cloud, public cloud, 

and hybrid cloud 

A cloud infrastructure or frame is the set of hardware and software that 

facilitates the “five essential characteristics” of cloud computing mentioned above. 

The cloud infrastructure can be regarded as comprising of both a physical layer 

and an abstraction layer. The physical layer involves the hardware resources that 

are needed to support the cloud services being provided, and classically consist of 

a server, storage and network components. The abstraction layer consists of the 

software deployed across the physical layer, which manifests the “essential cloud 

characteristics”.  

The three service models that can be provided by a cloud are described as 

follow: 

• Software as a Service (SaaS): The client uses the provider’s applications 

running on a cloud infrastructure. The applications are easily managed 

from customer devices through either a thin client interface, such as a 

web browser, or a program interface. The client does not manage or 

control the underlying cloud infrastructure including network, servers, 
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operating systems, storage, or even individual application capabilities, 

with the possible exception of limited user specific application 

configuration settings. Commercial SaaS cases: Google Apps, Dropbox, 

and Cisco WebEx. 

• Platform as a service (PaaS): The client deploys onto the cloud 

infrastructure applications acquired or created using programming 

languages, libraries, services, and tools supported by the provider. The 

consumer does not manage or control the underlying cloud 

infrastructure including network, servers, operating systems, or 

storage, but has control over the deployed applications and possibly 

configuration settings for the application-hosting environment. 

Commercial PaaS cases: Windows Azure, and Heroku. 

• Infrastructure as a Service (IaaS): The provider provisions processing, 

storage, networks, and other fundamental computing resources on 

which the consumer is able to deploy and run arbitrary software, which 

can include operating systems and applications. The consumer does 

not manage or control the underlying cloud infrastructure but has 

control over operating systems, storage, and deployed applications, 

and possibly limited control of select networking components [77]. 

Commercial IaaS cases: DigitalOcean and Google Compute Engine. 
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2.1.2.2.8 Simulation 

All stages of the wide-ranging lifecycle of a product are supported and 

sustained by numerous IT-systems often known as ‘CAx’-systems [19]. These 

computer-based technologies (CAx), like Computer-Aided Design (CAD), 

Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), and 

Computer-Aided Process Planning (CAPP) systems, are used for engineering 

purposes, and conventionally focused on explicit and specific modeling tasks [107]. 

Hence, they are used by different professional communities at different phases of 

the PLM cycle [73]. Integrating different CAx software packages is vital to 

accomplish and realize digital manufacturing and computer-integrated 

manufacturing [43]. Putnam et al. (2017) emphasized that a whole production 

system should be simulated, not just a single machine [90]. They suggest running 

a virtual part through a physical system to reduce wasted materials and damage 

to machinery during commissioning. 

 RQ3. What empirical evidence is there concerning benefits and impact of 

digital transformation? 

2.1.2.3.1 Metrics and Maturity 

Maturity can be captured qualitatively or quantitatively in a discrete or 

continuous way [55]. Maturity models are usually used as a tool to conceptualize 

and measure maturity of a firm or a process concerning some specific target state 

[112]. Many maturity models have been developed for Industry 4.0: IMPULS – 
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Industrie 4.0 Readiness [68], Empowered and Implementation Strategy for 

Industry 4.0 [60], and the Connected Enterprise Maturity Model [97]. 

2.1.2.3.2 Model-Based Sustainment 

According to the Aerospace Industries Association, the US DoD is 

modernizing ways the government purchases, develops, fields, and sustains 

prospect weapon and defense systems. Employing the Digital Twin within Model 

Based Engineering (inclusive of Model Based Manufacturing and Model Based 

Sustainment) enables authoritative technical data, software, information and 

knowledge so decision makers have the right information and statistics when they 

need it [86]. 

In a model-based method, data is related with a predefined model; 

consequently, model-based methods are fixated on confirming a previous 

hypothesis (the model) based on existing data and refining scientific understanding 

[48]. In model-based approaches, a model is constructed using a certain 

methodology, for instance the dynamic data systems (DDS), and diagnosis is 

implemented by sensing the changes and nonconformities in the model 

parameters and/or the variations in anticipated system responses [70]. 

Furthermore, model-based methods employ an explicit mathematical model of the 

production plant, represented in the form of differential equations [64]. The core 

hypothesis behind model-based methods is the existence of a system’s model, 

which typically consists of objects and relations amongst these objects [139]. 
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Model-based Engineering (MBE) aims at the extensive use of models of different 

features of the system throughout the whole engineering workflow, ideally from 

the abstract design through thorough design, manufacturing, test, commissioning, 

and operation [28]. 

 RQ4. What empirical evidence is there concerning challenges? And how 

overcome them? 

2.1.2.4.1 IoT Interoperability and Security Issues 

Despite the fact that the technological innovations necessary for developing 

individual IoT systems is already here, the challenges of the interoperable IoT 

ecosystems are still under investigation [141]. In the Industrial Internet of Things 

(IIoT), there is a strong need for a high level of interoperability among 

independently developed systems, often from different venders [21]. Additionally, 

IoT is still facing several types of attacks (active and passive) that could interrupt 

functionality. In a passive attack, an intruder senses the node or steals the data 

but it never attacks physically. On the other hand, active attacks disrupt the 

performance physically. Therefore, security constraints must be applied to avoid 

devices or machines from malicious attacks [96]. 

Davis et al. (2012) also described the difficulty of moving into smart 

manufacturing [20]. They stated that existing tools need to be adapted to remain 

competitive while the tools are still useful. The United States will have more 

difficulty adapting to smart manufacturing because of our sunk cost of current 
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systems, and business, political, and regulatory uncertainties, while developing 

countries can take a greenfield approach. 

Prominent in the field of model-based methods (described earlier) is the 

cooperative Model-Based Systems Engineering initiative of INCOSE and the Object 

Management Group [82]. The International Council on Systems Engineering 

(INCOSE) describes Model based system engineering (MBSE) as a formalized 

application of modelling to support system requirements, design, analysis, 

verification, and validation activities beginning in the conceptual design phase and 

continuing throughout development and later lifecycle phases. One of the most 

important challenges when considering MBSE of IoT systems is model mapping 

and transformation, arising from the complex interoperability requirements in IoT 

ecosystem [141]. The primary goal of an MBSE approach is to capture inter-

relationships in the complex system at different levels of abstraction, which 

supports a shared reference for diverse models and datasets [76]. 

2.1.2.4.1.1 Data Issues 

Since smart manufacturing is a method in which information is used to 

update and adapt manufacturing in real time throughout the supply chain and in 

all scales of industry, large amounts of data will be created, and the large amounts 

of data created by sensors will need to be used effectively [143]. Cheng et al. 

(2018) states that this data will be more than current manufacturers are used to 

handling [15]. Therefore, data mining techniques should be used to find patterns 
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and useful information. The current data mining techniques are not capable of 

processing so much data. Kusiak (2017) notes that engineering and business 

schools rarely teach data science [58]. Companies do not know what to measure, 

and data is not stored in a manner convenient for modeling. This author warns 

that companies need to use the proper strategies to add sensors to equipment, 

improving data collection, and building predictive models that can handle 

uncertainty. He also notes that software must be designed to work across 

companies in the supply chain.  

Hu, et al. (2018) also note that more efficient means of sharing data are 

needed [44]. They define the terms Cyber Physical Cloud Manufacturing (CPCM) 

and Cloud Based Digital Twins (CBDT). This system uses central servers to control 

manufacturing systems and hosts digital twins in the cloud as shared resources. 

This requires a large number of applications to be processed at the same time. A 

CPCM might control multiple factories and thousands of machines. They note 

CPCMs currently use standard internet protocols such as HTTP, TCP, etc. and that 

this can cause delay s and loss of connections. The authors created a framework 

using the MTConnect language to improve communication and data reliability. 

Preuveneers et al. (2018) suggested using software industry best practices of 

feature toggles and software circuit breakers [88]. These built-in software controls 

can enable or disable new features for testing or disable any feature automatically 

if it caused an error. Thus, the software can continue to run with fewer features 

but without crashing. 



www.manaraa.com

 

30 

Tao et al. (2018) describe the value of data not as the volume, but the 

information and knowledge it contains [125]. To this end, data must be translated 

into information that can be understood. The “data lifecycle” is the complete 

journey from collection to use. Likewise, companies must design or select sensors 

that work well with most equipment [58].  

Grieves and Vickers (2017) stated that the connectivity between IOT 

devices should be simulated and tested in enough detail to observe possible 

emergent behaviors in the resulting complex systems [35]. The authors also stated 

that companies using smart manufacturing will need to ensure that their data is 

consistent across all departments and along the supply chain. 

2.1.2.4.1.2  Artificial Intelligence as Solution 

Artificial intelligence has been suggested as a means to handle data in smart 

manufacturing. Wang et al. (2018) defines smart manufacturing as “using 

advanced data analytics to complement physical science for improving system 

performance and decision making” [130]. They state that smart manufacturing will 

need deep learning handle the data, and the paper surveys deep learning 

algorithms. However, they warn deep learning may not be good at non-structured 

data of different types. They emphasize users must find the right deep learning 

models for many different manufacturing processes.  

Ever since its conception in the fifties of the last century, the field of AI has 

witnessed alternating periods of intense growth and significant decline [5]. 
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Artificial Intelligence, a subdivision of computer science capable of analyzing 

multifaceted data [95], can be defined as the automation of tasks and processes 

that are linked to human thinking, for instance decision making, problem solving, 

learning, perception, and reasoning [46]. In recent years, features such as growing 

computational power and accessibility to Big Data, among others, have led to 

renewed interest in the field. As a result of this persistent evolution in AI research, 

the meaning of what is considered AI is also constantly evolving [5]. AI will still 

require human interaction and interpretation. Zhong et al. (2017) suggests 

machine learning should be adapted to include ‘humans-in-the-loop’ so people can 

direct the machine learning more effectively [143]. Wang et al. (2018) states the 

results of the analysis will need to be understood by engineers [130]. They suggest 

making generic deep learning models and models that learn incrementally, not just 

from one data set. 

2.1.2.4.2 Emerging Standards 

Standards simplify the job of stakeholders by ensuring standardization and 

encouraging interoperability [127]. The emergent technology of wireless sensor 

network has provided novel models and paradigms for factory automation that has 

notable impacts on control, tracking, monitoring, and diagnostics of the 

manufacturing processes and tools [144]. IEEE 1451 is the family of emerging 

standards for a networked smart transducer interface which is responsible for the 

common interface and supporting technology for the connectivity of transducers 

to control devices, and data acquisition systems [63]. The standardization and 
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regulatory bodies such as IETF, IEEE and ETSI are critical to the technology 

advancement of IoT and IIoT [47]. Schleich et al. (2017) note the digital twin 

concept lacks a conceptual framework [110]. They propose a template for digital 

twins to ensure scalability, interoperability, expansibility, and fidelity. They 

compare existing solid modeling schemas to what could be done for digital twins. 

 RQ5. What role does culture play in digital transformation? 

The improved inter-connectedness of businesses and entire industries is 

leading to ever more intertwined dependencies and is intensifying developments 

in distinct sectors of the economy both vertically and horizontally [6].  The focal 

cultural values and morals that are crucial for digital transformation success and 

attainment are: (1) openness towards change, (2) client centricity, (3) innovation, 

(4) agility, and (5) willingness to learn [39]. 

IT was considered as an enabler for some time, nonetheless, it has 

transformed, and a broader role of IT is being accepted by enterprises nowadays 

[87]. IT departments are provided with additional resources and responsibilities, 

hence Enterprise IT (EIT) governance has found a place in enterprises’ priority list 

[132]. EIT governance is the preparation for, making of, and employment of IT-

associated decisions concerning objectives, processes, persons and technology on 

a tactical or strategic level. 

Several authors noted the need for increased education. Davis et al. (2012) 

describe the field as “data rich and knowledge poor” and stated smart 
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manufacturing requires a more well trained workforce [20]. Schamp et al. (2018) 

noted the use of digital twins in education. The virtualization of processes and 

machinery allows every student to use the same virtual equipment simultaneously 

[108]. Mortensen and Madsen (2018) describe the development and use of a 

learning factory for Industry 4.0 and virtual commissioning [81]. The system is the 

Aalborg University Smart Production Lab. They built a virtual plant and connected 

it to real devices through PLCs. 

2.1.3 Summary 

Industries and engineering applications around the world are embracing the 

concept of Digital Transformation and Industry 4.0 to attain greater levels of 

business, asset, and product life management. This transformation is applied to 

all areas of a product’s life cycle which involves the design, manufacturing, and 

use (condition-monitoring) of a product. The methodology for carrying out digital 

transformation must have the following characteristics: data-driven (real-time and 

historical data), all inclusive (analysis provides input in multiple areas of product 

from design to supply chain), self-learning (predictive analytics, artificial 

intelligence, machine learning, physics-based models), and human-machine 

interaction (user-specific visualizations and dashboards). This process allows for 

machines, systems, and users to be interconnected which allows for faster 

decision-making and lesser downtime. Another benefit of digital transformation is 

that it can be applied to a variety of industries that include general machinery, 

water treatment, composites, health sciences, and chemical systems. 
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Digital transformation has become the vision of future product creation and 

production engineering environments. Industry 4.0 leverages the Internet of 

Things (IoT) and cloud computing to create a “smart factory” consisting of cyber-

physical systems that recreate a virtual copy of all machinery on the manufacturing 

floor as well as of the parts being manufactured allowing for the decentralization 

decisions. As part of Industry 4.0, emerging technologies such as virtual reality 

(VR), augmented reality (AR), mixed reality (MR), and digital twins create a robust 

methodology for smarter monitoring of processes and assets.  

It is also important to note that digital transformation is not just about 

technology. Leaders in industry will need to foster the right culture and mix of 

talents to shift into a functional digital business or factory. It is imperative for users 

of these systems to understand digital transformation. Training and educating 

users are necessary for digital transformation to be implemented correctly 

2.2 ROBOT AUTONOMY 

Autonomy is a necessary quality for robots in many application fields, 

particularly when the robot has to perform in real-life settings together with other 

robots, and/or when the situation changes in unanticipated behaviors. Robot 

autonomy is also critical when employed under certain legal and moral constraints 

(for instance, a robot support at the hospital, or an autonomously driving vehicle 

on roads). Besides the dictionary and subjective descriptions, there are numerous 

efforts to define the term. Nevertheless, no comprehensive agreement on this 
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matter has been reached up to now. Beer et al. present a wide-ranging 

investigation of current definitions in numerous fields including automation and 

robotics [7]. The definition of autonomy given by the authors is as follows: “The 

extent to which a robot can sense its environment, plan based on that 

environment, and act upon that environment with the intent of reaching some 

task-specific goal (either given to or created by the robot) without external 

control”. 

2.2.1 Automating Manual Operations 

Today, any practicing methods analyst should consider using special-

purpose and automatic equipment and tooling, especially if production quantities 

are large. Notable among industry’s latest offerings are program controlled, 

numerically controlled (NC), and computer controlled (CNC) machining and other 

equipment. These afford substantial savings in labor cost as well as the following 

advantages: reduced work-in-process inventory, less parts damage due to 

handling, less scrap, reduced floor space, and reduced production throughput 

time. For example, whereas two operators are required for a manually operated 

machine tool, only one operator is required for a computer-controlled machine 

tool. Use of a robotic arm operating a fully automated machine tool would not 

even require the one operator, considerably reducing labor costs (albeit with 

higher initial capital costs). 
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Other automatic equipment includes automatic screw machines; multiple-

spindle drilling, boring, and tapping machines; index-table machine tools; 

automatic casting equipment combining automatic sand-mold making, pouring, 

shakeout, and grinding; and automatic painting and plating finishing equipment. 

The use of power assembly tools, such as power nut- and screwdrivers, electric or 

air hammers, and mechanical feeders, is often more economical than the use of 

hand tools. 

The application of automation applies not only to process operations, but 

also to paperwork. For example, bar coding applications can be invaluable to the 

operations analyst. Bar coding can rapidly and accurately enter a variety of data. 

Computers can then manipulate the data for some desired objective, such as 

counting and controlling inventory, routing specific items to or through a process, 

or identifying the state of completion and the operator currently working on each 

item in a work-in-process. 

 Robot use for automation 

For cost and productivity reasons, it is advantageous today to consider the 

use of robots in many manufacturing areas. For example, assembly areas include 

work that typically has a high direct labor cost, in some cases accounting for as 

much as one-half of the manufacturing cost of a product. The principal advantage 

of integrating a modern robot in the assembly process is its inherent flexibility. It 

can assemble multiple products on a single system and can be reprogrammed to 



www.manaraa.com

 

37 

handle various tasks with part variations. In addition, robotic assembly can provide 

consistently repeatable quality with predictable product output. 

A robot’s typical life is approximately 10 years. If it is well maintained and 

if it is used for moving small payloads, the life can be extended to up to 15 years. 

Consequently, a robot’s depreciation cost can be relatively low. Also, if a given 

robot’s size and configuration are appropriate, it can be used in a variety of 

operations. For example, a robot could be used to load a die-casting facility, load 

a quenching tank, load and unload a board drop-hammer forging operation, load 

a plate glass washing operation, and so on. In theory, a robot of the correct size 

and configuration can be programmed to do any job. 

In addition to productivity advantages, robots also offer safety advantages. 

They can be used in work centers where there is danger to the worker because of 

the nature of the process. For example, in the die-casting process, there can be 

considerable danger due to hot metal splashing when the molten metal is injected 

into the die cavity. 

Automobile manufacturers have placed emphasis on the use of robots in 

welding. For example, at Nissan Motors, 95 percent of the welds on vehicles are 

made by robots; and Mitsubishi Motors reported that about 70 percent of its 

welding is performed by robots. In these companies, robot downtime averages 

less than 1 percent. 
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Furthermore, analysts should always be looking for ways to automate 

materials handlings to eliminate inefficient steps without sacrificing safety. One of 

the 10 principles developed by the MHI (Materials Handling Institute) for better 

material handling focuses the Automation Principle. Material handling operations 

should be mechanized and/or automated where feasible, to improve consistency 

and predictability, decrease operating costs, and eliminate repetitive or potentially 

unsafe manual labor. 

However, a major obstacle for robot automation is robot autonomy and 

undependability which is expanded in the following section. 

2.2.2 Autonomous Robot Capabilities 

A vital problem that challenges the designer of a cognitive architecture is 

how to let robots access many sources of information. Several abilities discussed 

below give the robot access to such knowledge. For example, knowledge about 

the setting/environment comes through perception, knowledge about insinuations 

of the present state comes through planning, reasoning, and prediction, 

knowledge from other agents comes via communication, and knowledge from the 

past comes through remembering and learning (Figure 2.3, page 49). The more 

such capabilities an architecture supports, the more foundations of knowledge it 

can access to update its performance and behavior. Langley et al. (2009) 

summarizes the capabilities of cognitive architecture as follows [59]; in our case, 

this will be applied to autonomous robots: 
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 Recognition and categorization 

 An autonomous robot must make some contact between its environment 

and its knowledge. This requires the ability to recognize situations or events as 

instances of known or familiar patterns. Recognition is closely related to 

categorization, which involves the assignment of objects, situations, and events to 

known concepts or categories. The robot must recognize and categorize the 

conveyor and the different pieces to manipulate (static), as well as the human 

collaborator’s movements and actions (dynamic). 

 Decision making and choice 

 To operate in an environment, an intelligent system also requires the ability 

to make decisions and select among alternatives. To support decision making, a 

cognitive architecture must provide some way to represent alternative choices or 

actions, whether these are internal cognitive operations or external ones. It must 

also offer some process for selecting among these alternatives, which most 

architectures separate into two steps. The first determines whether a given choice 

or action is allowable, typically by associating it with some pattern and considering 

it only if the pattern is matched. The second step selects among allowable 

alternatives, often by computing some numeric score and choosing one or more 

with better scores. Such conflict resolution takes quite different forms in different 

architectures. 
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 Perception and situation assessment 

 Cognition does not occur in isolation; an autonomous robot exists in the 

context of some external environment that it must sense, perceive, and interpret. 

A robot may sense the world through different modalities; the sensors may range 

from simple devices like a thermometer, which generates a single continuous 

value, to more complex mechanisms like stereoscopic vision or sonar that generate 

a depth map for the local environment within the agent’s field of view. Perception 

can also involve the integration of results from different modalities into a single 

assessment or description of the environmental situation, which an architecture 

can represent for utilization by other cognitive processes. An architecture that 

supports perception should also deal with the issue that sensors are often noisy 

and provide at most an inaccurate and partial picture of the agent’s surroundings. 

These challenges can be offset with perceptual knowledge about what sensors to 

invoke, where and when to focus them, and what inferences are plausible. Thus, 

situation assessment requires an intelligent agent to combine perceptual 

information about many entities and events, possibly obtained from many sources, 

to compose a large-scale model of the current environment. 

 Prediction and monitoring 

 Autonomous Robots exist over time, which means they can benefit from 

an ability to predict future situations and events accurately. Prediction requires 

some model of the environment and the effect actions have on it, and the 
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architecture must represent this model in memory. An ideal architecture should 

also include the ability to learn predictive models from experience and to refine 

them over time. Once an architecture has a mechanism for making predictions, it 

can also utilize them to monitor the environment. Monitoring also provides natural 

support for learning, since errors can help an agent improve its model of the 

environment. 

 Problem solving and planning  

Autonomous robots must achieve their goals in novel situations, the 

cognitive architectures that support them must be able to generate plans and solve 

problems. Intelligent agents that operate in and monitor dynamic environments 

must often modify existing plans in response to unanticipated changes. This can 

occur in several contexts. For instance, an agent should update its plan when it 

detects a changed situation that makes some planned activities inapplicable, and 

thus requires other actions.  

 Reasoning and belief maintenance 

Problem solving is closely related to reasoning, another central cognitive 

activity that lets an agent augment its knowledge state. Whereas planning is 

concerned primarily with achieving objectives in the world by taking actions, 

reasoning draws mental conclusions from other beliefs or assumptions that the 

agent already holds. To support such reasoning, a cognitive architecture must first 

be able to represent relationships among beliefs. A common formalism for 
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encoding such relationships is first-order logic, but many other notations have also 

been used, ranging from production rules to neural networks to Bayesian 

networks. Note that reasoning is not only relevant to infer new beliefs but also to 

decide whether to hold existing ones (belief maintenance). Such belief 

maintenance is especially important for dynamic environments in which situations 

may change in unexpected ways, with implications for the agent’s/robot’s 

behavior. 

 Execution and action 

Ideally, a cognitive architecture should also be able learn about skills and 

execution policies from instruction and experience. Such learning can take different 

forms, many of which parallel those that arise in planning and problem solving. 

 Interaction and communication 

Sometimes the most effective way for an agent to obtain knowledge is from 

another agent, making communication another important ability that an 

architecture should support. Agents exist in environments with other agents, and 

there are many occasions in which they must transfer knowledge from one to 

another. Whatever the modality through which this occurs, a communicating agent 

must represent the knowledge that it aims to convey or that it believes another 

agent intends for it. 
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 Remembering, reflection, and learning 

Remembering is the ability to encode and store the results of cognitive 

processing in memory and to retrieve or access them later. Reflection involves 

processing of either recent mental structures that are still available or older 

structures that the agent must retrieve from its episodic store. A final important 

ability that applies to many cognitive activities is learning. Learning usually involves 

generalization beyond specific beliefs and events. 

2.2.3 Summary 

Despite the many conceptual advances that have occurred during three 

decades of research on cognitive architectures, and despite the practical use that 

some architectures have seen on real-world problems, there remains considerable 

need for additional work on this important topic. Most architectures emphasize the 

generation of solutions to problems or the execution of actions, but categorization 

and understanding are also crucial aspects of cognition, and we need increased 

attention to these abilities. Furthermore, most architectures emphasize logic or 

closely related formalisms for representing knowledge, whereas humans also 

appear to utilize visual, auditory, diagrammatic, and other specialized 

representational schemes. We need extended frameworks that can encode 

knowledge in a variety of formalisms, relate them to each other, and use them to 

support intelligent behavior more flexibly and effectively. 
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2.3 ROBOT HEALTH DETERIORATION AND FAILURE  

RIA (The Robot Institute of America) has well-defined a manufacturing robot 

as a reprogrammable multifunctional manipulator intended to transfer material, 

parts, tools, or specialized devices through variable programmed motions for the 

performance of a variety of tasks [122]. Yet, an unexpected robot slowdown or 

interruption has the ability to induce a disruption all along the whole manufacturing 

line, resulting in financial and production losses. Readiness and maintainability, 

which can be defined as the likelihood of a system functioning acceptably in any 

time period and its ability of being repaired, are consequently crucial for industrial 

robots. Therefore, the automated monitoring of the robot system is necessary and 

looked-for, as this can enhance robot availability and maintainability and reduce 

operator effort. Additionally, industrial robots are highly convoluted machineries 

and hence the implementation of condition monitoring for them diverges from that 

of simple machinery. This is essentially due to the rapid changes of geometrical 

configuration of the robotic arm. 

In addition, robot failures are costly and difficult to diagnose. Breakdown 

data for robot-automated production lines, collected from automotive applications, 

showed that nearly half of robot failures are caused by positional error. A further 

quarter were attributed to drive failures. Positional error may be caused by a 

number of mechanical failure modes or by poor tuning of the control system. 

Testing of repeatability or absolute position in the workplace is hard because the 
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robot moves quickly, allowing little time for measurement. Measurement may be 

required in up to six axes. 

To bypass stoppage, recovery stations permit production to continue whereas 

diagnosis and reparation of the failure/disruption progresses, by providing either 

a standby robot or a station where the stopped task can be completed by hand. 

These procedures can accomplish plant availability at the cost of either added 

machineries which is typically idle or by functioning at reduced manufacturing rates 

through these downtime phases [26]. Nevertheless, the prevailing tendencies in 

design of production lines is away from these procedures for the following 

motivations [123]: 

 It is not practical or cost effective to operate with one or more spare robots 

on the line. 

 It is not practical or cost effective to substitute a malfunctioning robot on 

the spot. 

 The complexity of modern assembly demands that the variety of fixtures 

and end-effectors required makes each workstation unique. 

 Substitution of a robot with a human operator has several shortcomings: 

o he or she cannot work as fast as a robot, 

o workers in an automated factory are limited in number, 

o he or she cannot be an expert in all the manufacturing operations. 
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Furthermore, it is not good practice to allow complex plant to run to failure 

because: 

 Consequential damage is expensive. 

 Production is lost. 

 Safety is compromised 

Currently, there are limited commercially existing solutions that support the 

automated monitoring of the components of a robot and its gripper or fixture, and 

consequently the capacity to unceasingly monitor the state of robots has become 

an significant research theme in recent years and is now getting substantial 

consideration [51]. 
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Table 2.1: Distribution of selected articles (per journal) 

Journal name Number of Articles 

International Journal of Production Research 17 

IEEE 18 

Procedia 8 

International Journal of Computer Integrated 

Manufacturing 
3 

Computers in Industry 4 

Others Journals 24 

Conference Proceedings 10 

Total 85 
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Figure 2.1: Distribution of selected articles over time 
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Figure 2.2: Key Technology Drivers Of Industry 4.0 
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Figure 2.3: Autonomous Robot Capabilities 
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CHAPTER 3 

MULTIMODAL ROBOTIC HEALTH IN FUTURE FACTORIES 

The manufacturing sector is continuously reinventing itself by embracing 

opportunities offered by the industrial internet of things and big data, among other 

advances. Modern manufacturing platforms are defined by the quest for ever 

increasing automation along all aspects of the production cycle. Furthermore, in 

the next decades, research and industry are expected to develop a large variety 

of autonomous robots for a large variety of tasks and environments enabling future 

factories. This continuing pressure towards automation dictates that emergent 

technologies are leveraged in a manner that suits this purpose. These challenges 

can be addressed through the advanced methods such as [1] large-scale 

simulation, [2] system health monitoring sensors and [3] advanced computational 

technologies to establish a life-like digital manufacturing platform and capture, 

represent, predict, and control the dynamics of a live manufacturing cell in a future 

factory. 

Autonomy is a desirable quality for robots in manufacturing, particularly when 

the robot needs to act in real-world environments together with other agents, and 

when the environment changes in unpredictable or uncertain way. This 

dissertation research will focus on experimentally collecting sensor signals from 
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force sensors, motor voltages, robot monitors and thermal cameras to connect to 

such digital twin systems so that more accurate real-time plant descriptions can 

be collected and shared between stakeholders. Creating a future factory based on 

an Industrial Internet-of-Things (IIoT) platform, data-driven science and 

engineering solutions will help accelerating Smart Manufacturing Innovation. 

Besides, this study will examine the ways of sharing knowledge between robots, 

and between different subsystems of a single robot, and implement concepts for 

communicating knowledge that are machine logical and reliable. My work will focus 

on applying the proposed methodology on more diverse manufacturing tasks and 

materials flows, including collaboratively assembly jobs, visual inspection, and 

continuous movement tasks (Figure 3.1, page 80). These tasks will require higher-

dimensional information such as, analog plant signals, and machine vision 

feedback to be fed into and train the digital twin. 

3.1 PLATFORM DESCRIPTION 

The manufacturing sector is currently reinventing itself by embracing the 

opportunities offered by digital transformation, industrial internet, cognitive 

automation, and artificial intelligence. In the McNAIR Future Factory lab, 

researchers are looking to pursue the potential convergence of cyber architectures, 

physical manufacturing processes, and control intelligence (Figure 3.2, page 80). 
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3.1.1 Platform Components 

Collaborative robots from Yaskawa Motoman are controlled by a safety-

enabled Siemens PLC system. Industrial sensors and visual systems are embedded 

as smart devices to monitor the process indicators and device health states during 

machine operations. The cyber infrastructure is constructed based on Siemens 

industrial product lifecycle management software solutions, which create a high-

fidelity simulation-based digital twin for the physical assembly line. The automation 

signals are synchronized and exchanged between PLC and the cyber systems. The 

researchers are also pursuing the deployable industrial AI connecting the cyber-

physical system. The inspection results inferenced from multiple sources, such as 

industrial sensors, inspection cameras, FLIR thermal camera, and the unmanned 

drone, are synchronized in the control loop. The state-of-art computer vision, 

neural networks, and reinforcement learning are supporting the autonomous 

decision-makings by artificial intelligence in the cyber-physical system. Moreover, 

programming physical robots within the virtual commissioning platform is not only 

precise but also intuitive, which does not require a robotic expertise to operate. 

The automation signals are synchronized and exchanged between PLC and the 

cyber system via an OPC-UA server. Figure 3.3 (page 80) shows the actual view 

and the virtual view of the current platform, Figure 3.4 and Figure 3.5 (pages 81 

and 82) give a glance at the planned design. Current implementations of Virtual 

Commissioning still require manual construction of the digital system, definition 

and tuning of system components. However, the development of industrial 
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software solutions to Virtual Commissioning has greatly improved the accuracy and 

user-friendliness of offline programming robotic systems and verifying control logic 

over the traditional commissioning process. The Virtual Commissioning solution 

used to build the virtual cell for this work was Siemens Tecnomatix Process 

Simulate. 

 System Architecture and Data Flow 

At the level of system integration, this smart data-driven system 

implementation workflow unfolds from three aspects. First, a virtual platform is 

constructed within industrial software to simulate real-life manufacturing cell 

behaviors. Second, towards a real-time, two-way implantation of the control loop 

digitalization and near real-time data communications are furtherly realized. Third, 

the virtual and physical system integration is driven by an intelligent scheduler 

while training machine learning models for scheduling optimization. This dynamic 

scheduler agent, termed the Digital Engine (DE) [134], is developed as a smart 

process optimization tool utilizing integrated platform data and applicable machine 

learning algorithms. 

The proposed system (Figure 3.6, page 83) consists of: (1) Machine 

Learning (ML)- based dynamic scheduling agent Digital Engine (components in 

red) linked with both (2) the physical manufacturing cell (components in orange) 

including sensors, PLC controllers, middleware control components and other 

actuators, and (3) the virtual manufacturing cell (components in blue) 
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accommodated by selected industrial simulation software, enabling the testing and 

commissioning of control logics and programs to be pushed to the physical plant. 

The communication of the proposed system requires information flow between 

three ends as in Figure 3.6. 

Beyond simulation-based virtual cell construction, data communication 

between systems is one of the other major topics in creating an interactive model. 

Depending on the types of controllers and interacting environments in the control 

loop, system commissioning is categorized as real commissioning, hardware-in-

the-loop commissioning, reality-in-the-loop commissioning and constructive 

commissioning. In particular, Virtual Commissioning control loops, under the 

assumption of interacting with virtual environments, are classified as “hardware-

in-the-loop” and “software-in-the-loop” depending on whether physical 

components such as PLCs and HMIs or their virtual counterparts are connected to 

the simulations. In this model, the fusion of data from physical and virtual sources 

is proposed to be realized in two manners. First, with the philosophy of Virtual 

Commissioning being the capability to virtually validate system engineering, an 

intuitive data fusion occurs in a sequential manner, which means the digital twin, 

as a surrogate system, to upfront check system data resides in object dimensions, 

robot dynamics, signals, control logics and executed programs before they flow 

into the physical system implementations. This approach is described in this work 

as an importance-weighted data integration process. Second, beyond the 

conventional virtual commissioning approach, our proposed system, which is 
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driven by machine learning modules, enables a pathway to convert unprocessed, 

complex and unclean real-word data to semantic communications among PLC 

control logics. The classification and pattern recognition capabilities of machine 

learning algorithms will be further utilized in the industrial decision-making process 

in a timely manner. To that end, specific data inference models will need to be 

developed, trained and validated by different datasets that can be potentially 

amplified by virtual data. This manner of data fusion by hybridizing physical and 

virtual datasets for specific manufacturing processes will be further pursued in our 

subsequent work, which is enabled by the data communication scheme in this 

proposed implementation. 

The main industrial control loop in a physical cell is administrated via a PLC, 

which centralizes all the control logic flow between lower level components. 

Advancements in control paradigm typically necessitate reworks in current physical 

configurations, including redesign, rewiring and reprogramming of physical PLCs. 

To cope with this, we implement a similar philosophy of cyber-physical system 

based modular factory for the goal of easily customizable and reconfigurable 

control modules. To evaluate control feasibility and effectiveness, control scheme 

simulations as a digital counterpart of the physical control loop need to be 

developed.  

Our physical cell components of the platform include sensors, actuators, 

middleware controllers and a S7-1500 PLC (Figure 3.7, page 84). Middleware 

controllers are chosen to control specific actuators, end effectors or lower-level 
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control objects, for example, YRC1000 controller is the master of the HC10 robot. 

The communication between S7-1500 and YRC1000 robot controller is achieved 

through a Siemens CP1616 PROFINET board. Siemens TIA Portal as the 

automation software platform to program Siemens PLCs, including modules as 

WinCC and Step7, can also create HMI screens and allow access to the OPC server 

from a PC. The physical control loop over a robot is presented in Figure 3.8 (page 

85). 

During the control process, downloaded programs are executed by PLC 

cyclically scanning and compiling sequenced rungs, usually as ladder diagrams. 

When these programs are directly compiled and tested on physical setups, their 

debug process is often difficult and time consuming, as the PLC is potentially giving 

or receiving faulty commands to the physical system. Hence, Virtual 

Commissioning provides a methodology that can interact with the digital twin not 

only by performing process simulations, but also by virtualizing the control loops. 

The control loops of Virtual Commissioning components are described in 

Figure 3.9 (page 86). By which means, programmers are able to expect the system 

responses from the digital twin by downloading untested logics to either physical 

PLCs (“hardware-in-the-loop”) or the simulated PLC (“software-in-the-loop”). The 

“hardware-in-the-loop” implementation consists of the following components: 

physical PLC, OPC server and OPC clients. OPC server/client pairs are software 

interface standard enabling PC to communicate with industrial hardware devices. 

OPC server converts the hardware communication protocol used by PLCs to OPC 
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protocols. OPC server is accommodated in S7-1500 and can be accessed by OPC 

clients such as Process Simulate, which connects directly to digital cell signals. On 

the other hand, a “software-in-the-loop” implementation in Figure 3.9 presents a 

software-only control loop that includes the virtual counterparts of the physical 

components: simulated HMI, PLC simulator, OPC server and OPC clients. The 

difference between “software-in-the-loop” and “hardware-in-the-loop” lies in 

whether simulated PLC and HMI are used instead of physical PLC and HMI. 

“Software-in-the-loop” excludes the usage of hardware components in the loop of 

two-way communications between physical and digital counterparts by routing the 

signals through the OPC server and the PLC simulator, where the programs can 

be executed within a software environment that matches the behavior of a real 

PLC. By this route, control safety and feasibility can be evaluated in the virtual 

environment before downloading to physical PLC. Hence, the digital counterpart 

of the control loops is achieved by simulating both PLC functions in PLCSIM 

Advanced and Human Machine Interfaces in WinCC Runtime. Therefore, the 

proposed model is realized not only in system modelling and simulations, but also 

in the digital transformation of control and connection pathways. 

3.1.1.1.1 Remote Human Interface via OPC Server 

Although adaptive intelligence demonstrated its control capability for 

process that follows a sequence of predefined steps in a fairly controllable 

environment, human still remain superior at adapting unforeseen changes in 

complex environment. Supporting cognitive “social human-in-the-loop” is 
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identified as a manufacturing control architecture for future smart factories. 

Currently at an early stage of manufacturing intelligence, human interventions 

must be reliably enabled for automation systems considering limited prognostic 

knowledges of unexpected incidents such as equipment failure, or manufacturing 

strategy changes ordered from multiple stakeholders. Besides the characteristics 

such as autonomy, fully automation and proactivity, it was determined by Mittal et 

al. that context awareness, interoperability and compositionality are more 

commonly used to classify a system as a Smart Manufacturing system. The 

integration of heterogeneous and independent systems as a network for a common 

goal of robustness, performance or cost is also defined as “System-of-system 

engineering”. Supporting technologies such as cyber-physical systems and 

Industrial Internet (IIoT) are emphasized in this context. In this work, interfaces 

developed in proposed implementation also concern remote human interventions 

and monitoring over automated systems following current industrial practices and 

protocols. 

Typically, in automation systems, safety logics and signals such as 

emergency stops designed to immediately terminate machine operations are not 

preferably administrated by users. As they are engineered to effectively prevent 

system damage, one should not allow their remote access and always remain the 

same settings by original equipment manufacturers. As network delay and 

potential unreliability raise some potential concerns. For this reason, the remote 

access applications are urged to exclude any signals and logics related to safety. 
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Such as, the emergency stop must always only rely on a local physical HMI 

machine, even if it is possible to remotely control e-stop buttons. For a single robot 

system, external robot signals that operators should be safely allowed to interact 

with are: External Servo on/off, Safety Speed Enable, Play/ Teach Mode Select, 

Master Job Call, External Start, External Hold, Job Start, Robot Return Home, etc. 

Hence, a local customized virtual HMI is designed (Figure 3.10, page 87) using 

SIMATIC HMI simulator within TIA portal. Each of the robot signals is mapped to 

a memory registered inside OPC Server that can be written to and read from by 

HMI simulator. To enable a remote-control pathway, OPC server is directly 

accessed online by extending a python implementation of OPC client FreeOpcUA. 

A PC end GUI is designed as Figure 3.11 (page 88). Connecting these signals with 

an online space can serve as an initiative IIoT platform application available to 

different user ends. Further efforts will be made by our subsequent work to provide 

features such as smart interactions, enhanced cyber security with hierarchical log 

in and management authorities, and online database maintenance. For instance, 

concerning an application of automation security, the physical HMI should override 

changes made by any HMI simulator locally or remotely. Meanwhile, a local HMI 

should override any changes made by remote HMI. 

3.2 GRIPPER HEALTH MONITORING 

Pneumatically driven actuation systems and robotic grippers have an 

significant role in several automated manufacturing processes. Compressed air 

offers the essential energy, providing high power-to-weight and cost-to-benefit 
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ratios, supporting their use in many industries including automobile, electronic, 

pharmaceutical, and material handling. The deployment of such devices has 

facilitated the automation of many production processes where they are commonly 

used to perform tasks that consist of repetitive actions that are often undertaken 

at high speed with a high degree of accuracy especially in so called “pick and 

place” operations. In this context combinations of linear actuators and two-finger 

parallel grippers are widely used [89]. 

The method projected in this document has been established as being able 

to provision improved control tactics for these systems with its ability to monitor 

and optimize the process. 

3.2.1 Gripper Sensing 

Modern manufacturing is moving towards a considerably more connected 

future. The integration of data, particularly live data, in the context of production 

will be a key motivator in future factories. Additionally, with the rise of Industrial 

Internet of Things (IIoT) platforms, the possible applications for utilizing live data 

in manufacturing are various.  

By implementing modern data analytic techniques such as machine learning 

and digital twins, comprehensive and predictive health models can be generated 

to provide critical information about current operation, required maintenance, and 

detailed task analysis (Figure 3.2, page 80). 
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Five sensors are installed into a robotic gripper. Each sensor monitors, and 

records data acquired from different components of the robotic gripper. The data 

collected from the sensors is transferred to a website to be processed and paired 

with a camera live feed. The data then will be able to be transferred to different 

media so the robotic systems health can be displayed and monitored. This 

application provides a better real-time representation of the robotic system’s 

health and will allow the user to act proactively. Figure 3.12 and Figure 3.13 (pages 

88 and 89) depict all five sensors used on the gripper. 

These sensors attached to the robot will help derive some important Key 

Performance Indicators (KPI) showing the health of the gripper. Each metric has 

a target and fallback value that will be used as parameters when designing and 

testing the product. 

 Fault Detection 

With the sensors mounted on the end of the robot, many faults that can 

occur in the system can be detected. Figure 3.14 (page 90) shows three 

consecutive tasks of gripping a cylindrical object. In the first two trials, the linear 

potentiometer detected a signal change however the load cell did not. In the third 

trial, we notice that both the load cell and the linear potentiometer detected the 

grip on the object. With such control on the gripper, the virtual commissioning 

model can be trained to detect when a gripper misses the part and grip to nothing 

and take corrective action. The linear potentiometer gives an illustration of the 
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status of gripper opening and closing; however, the addition of the load cell could 

help in detecting and monitoring if the gripper in fact gripped onto something or 

just in the air.   

On the other hand, another experiment was also conducted to test the 

detection of object slippage while gripping. Figure 3.15 on page 91 depicts 4 

consecutive tasks where the gripped first gripped onto the part, then lost grip 

totally (tasks 1 and 2) or partially (tasks 3 and 4). These detections can be 

reinforced using control loops and embedding them into the virtual simulation. 

3.2.2 Mathematical Concepts for Health Monitoring Modelling 

 Support Vector Machine (SVM) 

This concept for the health model component of the design utilizes a 

supervised machine learning approach. Incoming data from the robotic arm or the 

digital twin can be used to train the SVM, which takes advantage of the real-time 

aspect of data collection using online learning. This means that the model will 

continuously train and become more accurate during operation. By correctly 

categorizing pre-labeled sensor data as in-bounds or out of bounds, this model 

aims to generate ideally located hyperplanes which provide context and meaning 

to the data. These hyperplanes can be N-dimensional, allowing for any or all of 

the individual sensor data streams to be compared and analyzed for maximum 

predictive ability. The purpose of the model is to conduct precision deterioration 

detection and health monitoring for the robotic arm. In general, the health 
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degradation monitoring methods might be divided into three main kinds, that is, 

model-based method, data-driven method and qualitative knowledge-based 

method. Owing to the nonlinearity and uncertainty of degradation process and the 

complexity of failure mechanisms, data-driven methods are much easier than the 

other two kinds of methods in terms of implementation. Support vector machine 

(SVM), as a data-driven method, determines an optimal hyperplane to define a 

decision boundary which separates input data points into different classes. SVM 

has an irreplaceable advantage in solving the problem of small sample, high 

dimensional and nonlinear classification. Hence, SVM has been extensively used 

for fault diagnosis and health degradation monitoring. 

Multidimensional feature extraction is achieved to reflect the various 

characteristics of degradation process from different aspects, via the integration 

of time domain features extraction based on time domain statistical analysis, and 

frequency domain features extraction based on power spectrum analysis based on 

the type of data and it’s source from the gripper. Raw sensor signals cannot be 

directly utilized to accomplish health degradation monitoring of machining tools 

because of the contained redundant information with noise. To detect and track 

the evolution of nonlinear and stochastic degradation processes for machining 

tools, multidimensional features for the health degradation monitoring are 

generated by analyzing time domain, frequency domain and time-frequency 

domain of the preprocessed sensor signals. 
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 Back-Propagation Neural Network (BPNN) 

Our second concept for the heuristic health model is to make use of a Back-

Propagation Neural Network (BPNN), which is a supervised (data labeled) artificial 

neural network (ANN). This model again makes significant use of online learning 

capabilities to continuously update with incoming live data streams. One 

advantage of the BPNN is the ability to fine tune the algorithm through adjustment 

of the learning rates and biases of our cost function. However, there exists the 

potential for overfitting or overlong learning times which could impact the 

predictive effectiveness of the model. 

3.2.3 A non-Conventional Application of Statistical Process Control (SPC) Charts 

in Health Monitoring 

Statistical Process Control (SPC) is a technique of gauging and monitoring 

quality by closely observing a given manufacturing process. Appropriate quality 

data is collected in the form of product measurements or readings from various 

machines. This data is used in evaluating, monitoring and controlling the variability 

of the considered manufacturing process. This section proposes the expansion of 

SPC methods to predictive maintenance. Applications of SPC techniques in various 

fields outside of basic production systems have been increasing in popularity. 

Furthermore, this section investigates the practicality and viability of using Control 

Charts in predictive maintenance and health monitoring. Moreover, this study 

discusses numerous enabling technologies, such as Industrial Internet of Things 
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(IIOT), that help to advance real-time monitoring of industrial processes. This 

study also expands briefly on the use of Naïve-Bayes and other Machine Learning 

methods to identify strong (naïve) dependencies between specific faults and 

special patterns in monitored measurements. Despite its idealistic independence 

assumption, the naïve Bayes classifier is effective in practice since its classification 

decision may often be correct even if its probability estimates are inaccurate. 

Optimal conditions of naïve Bayes will be also identified, and a deeper 

understanding of data characteristics that affect the performance of naïve Bayes 

is analyzed. 

 Background 

Control charts are used to detect special cause variation but other tools 

such as Pareto diagrams or fish-bone diagrams are sometimes needed to address 

root causes. If the data is normally distributed, standard Shewhart control charts 

are used. If the data is non-normally distributed with correlation, conventional 

control charts give too many false alarms. Selecting an appropriate control chart 

depends on characteristic and attributes of data and economic factors such as 

sampling, testing, investigation costs [74]. 

The modelling of the explicit relationship between maintenance and quality 

of the final product has not been adequately addressed. Ben-Daya and Duffuaa’s 

study on maintenance and quality highlights the missing link between the two and 

proposes a broad framework for modelling the maintenance-quality relationship. 
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A common feature of the existing models to determine economic production 

quantity (EPQ) and maintenance schedules jointly does not account for the 

optimization of maintenance amount. The new dimension brought to the modelling 

of this problem is including the maintenance effort as a decision variable to be 

optimized. In many PM models, system is assumed to be in new quality after 

maintenance, but a more realistic approach is when the failure of a system changes 

by assuming the system quality is between before failure and after maintenance 

states. However, there is no attempt in these models to optimize the PM effort to 

change the failure pattern in order to achieve given quality goals. One of the two 

proposed approaches is based on the idea that maintenance affects the failure 

pattern of the equipment and that it should be modelled using the concept of 

imperfect maintenance. The second approach is based on Taguchi’s approach to 

quality [8]. 

MacCarthy and Wasusri’s paper expands on the lack of connection between 

the failure detection patterns and maintenance processes identified in Ben-Daya’s 

paper. It reviews and highlights the critical issues of the non-standard applications 

of SPC charts in articles from 1989 to 2000, classified in five categories: monitoring 

of non-manufacturing processes using Shewhart charts, monitoring of non-

manufacturing processes using more advanced charts, deriving appropriate plans 

and schedules, evaluating customer satisfaction, and developing forecasting 

models. The articles reviewed are broken down in layered categories as below: 

 Application Domain 



www.manaraa.com

 

68 

o Engineering, industrial, and environmental applications 

o Healthcare applications 

o General service sector application 

o Statistical application 

 Data Sources Used 

 Types of Control Chart Technique Employed 

It is shown that application boundaries of SPC charts reach beyond 

manufacturing. In non-manufacturing applications, the nature and scope of the 

process and relevant quality characteristics must be clearly defined, as well as the 

concepts and interpretation of statistical control states. If the assumptions 

underlying the Shewhart theory are violated, more advanced control charts are 

needed. A step-by-step, holistic guide for selecting the best type of control chart 

for the objective is given. It is necessary to experiment with many types of control 

charts because of various data characteristics [74]. 

Jennings and Drake further examine the non-manufacturing use of control 

charts and propose the development of an original method of normalizing the 

interdependent measurement parameters in machine tool monitoring. Since some 

machine tool sub-systems operate continuously, intermittently, and at various 

torques and speeds, the measured data during steady-state and transient tests 

must be normalized during pre-processing before the construction of control 
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charts. This value will often be in error due to the error between the mean value 

of the group and the true value. Three-variable chart is created in a very similar 

fashion to the two-variable chart by using the residual values calculated from the 

deviation from means. The authors present these three examples of measurement 

normalization as a verification of their performance parameter inter-dependence 

compensation method [52]. 

The assumption of a steady state process presents an issue for the 

implementation of control charts in dynamic and unstable non-manufacturing 

applications such as predictive maintenance. Since the conventional Shewhart 

average level chart is not applicable when the variation is not purely random, 

adaptive moving charts are studied. Wang and Zhang’s objective in their study is 

to use adaptive SPC methods based on an autoregressive model to create an 

adaptive control chart that does not readily assume constant steady state and 

normal distribution of variables. Two-stage failure criteria are used as the basis for 

the SPC charts. This article attempts to analyze processes where no previous 

knowledge is present, and the process is non-stationary and most likely non-

Gaussian. The autoregression model used is basically a one-step ahead prediction 

based on the output values before being regressed on to the function itself. The 

coefficients and the error term of a linear, parametric autoregression model can 

be determined to levels of accuracy using published algorithms, such as the 

forwards least-squares algorithm. The adaptive moving average is also considered 

for the same vibrations data where it is found to be more conservative than the 
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adaptive moving range method. The adaptive Shewhart average level chart is used 

simultaneously for all the variables and is found to be ideal because it does not 

need a subjective threshold level; however, it is very insensitive to small changes 

in measurements [25]. 

Yin and Makis take a Bayesian approach due to the inconclusiveness of the 

steady state information about process control in their 2009 publication. In this 

paper, design of a multivariate Bayesian control chart for condition-based 

maintenance (CBM) applications is considered using the control limit policy 

structure and including an observable failure state. On top of the Bayesian chart 

to optimize the probability of true alarms and to find the best sample size, sampling 

rate, and control limits, optimization models for economic and economic-statistical 

design of the Bayesian chart are developed to determine the optimal control chart 

parameters to minimize the expected average maintenance cost. The proposed 

multivariate Bayesian control chart performs better and compromises its economic 

performance much less than the traditional chi-square chart when probability of 

failure prevention increases [138]. This section proposes the expansion of SPC 

methods to predictive maintenance. 

 The Selection of Appropriate SPC 

In the process of determining which SPC is more fit to our application, many 

aspects of the model development were assessed. Shewhart control charts (mainly 

x̄ and R chart or x̄ and s chart) are particularly useful in the first phase of an SPC 
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application: the process is to be expected to be out of control and undergoing 

assignable causes that are reflected in big changes in the observed parameters. 

However, a main drawback of the Shewhart control chart is its use only of process 

data contained in the last sample observation and its unawareness of any 

indication given by the full sequence of collected data. This feature renders 

Shewhart control chart unresponsive to slight process shifts (around 1.5*s or less). 

In cases where the process inclines to function in control, consistent estimates of 

process parameters (for instance, mean and standard deviation) are obtainable, 

but assignable causes do not normally result in great process upsets or 

disturbances. This issue can be addresses by introducing other criteria to the 

control charts, for example warning limits and other sensitizing rules, can be 

applied to Shewhart control charts to improve their performance against small 

shifts. Nonetheless, using such measures reduces the practicality and simplicity of 

a Shewhart control chart understanding, and intensely decreases the average run 

length (ARL) of the chart when the process is in control. 

An effective unconventional approach to the Shewhart that may be used 

when small process shifts are of interest is the cumulative sum (CUSUM) control 

chart. In this section, we focus on the cumulative sum chart for the process mean. 

First, If the process is in control at a target value µ0 (determined by training data 

from in-control process), the cumulative sum defined is a random walk with mean 

zero. On the other hand, if the mean shifts upward (µ1 > µ0), an ascendant shift 

will develop in the cumulative sum. On the contrary, if the mean swings descending 
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(µ1 < µ0), then a downward shift will progress. Consequently, if a trend develops 

upward or downward, we should consider this as evidence that the process mean 

has shifted, and a search for some assignable cause should be performed. The 

effectiveness of such chart was tested and validated for temperature and vibration 

data collected in the lab. Using the CUSUM method, we were able to detect 

cavitation in a centrifugal pump through vibration data, and gearbox fault 

detection using temperature data [105].  

In Figure 3.16 (page 92), the graphs are divided into 2 sections. The white 

section represents the training of the data (not reflected in upcoming graphs). The 

model was trained using normal condition data. The CUSUM calculations used to 

develop the graphs in Figure 3.16 how the system is in control (all points are grey 

and in control between H+ and H-. Once the cavitation is detected, the graph 

shows that the system goes out of control showing that the cavitation likely happed 

around the 34-35th second. 

Furthermore, Data for the gearbox demo was also used to validate the 

CUSUM model developed for fault detection. Figure 3.17, on page 93, shows how 

the fault induced was detected leading an out-of-control chart. 

We have observed in this paper how the CUSUM control chart was effective 

in sensing shifts in processes when faults were induced. 
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 Machine Learning Approach for Condition/Fault Dependency 

In our application, the process data are usually high-dimensional with multi-

categorical variables, as the process are being monitored with multiple sensor 

signals. In such cases, one classic fault classifier to correlate categorical features 

with a labeled fault will be Naïve-Bayes classifier. The prediction formula is: 

In Equation (1), Posterior �(�|��,��,��… ) represents the possibility of when 

signal sequence (��, ��, �� … ) are being observed, the possibility of the system 

having fault �, which could be temperature fault ��, pressure fault ��, vibration 

fault �� or leaking fault ��. More specifically, the faults at different components can 

be singled out and predicted. Prior �(��,��,��… ), Likelihood �(��,��,��…|�) and Evidence 

�(�) can be calculated based on the fault occurrence possibilities from experimental 

results (Table 3.1, page 78). Note that the Bayes rule can only handle categorical 

data, which requires sensor signals to be categorized using above SPC Charts to 

decide whether each signal is located within a safe range at the current monitor 

time. 

The superiority of Naïve-Bayes lies in that it can handle missing values well 

and show robustness to irrelevant feature signals. It is also a relatively fast 

algorithm dealing with big datasets, which is particularly important for online 

decision-making process. 

�(�|��,��,��… ) =
�(��,��,��… )�(��,��,��…|�)

�(�)
 

(1) k 
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3.3 ROBOT HEALTH DETERIORATION AND MONITORING 

Robot precision deterioration detection, monitoring, and valuation are 

crucial activities in numerous manufacturing robotic applications, particularly when 

it comes to the high precision processes that may comprise assembly, welding, 

material removal, drilling, and riveting. The deterioration of robot precision can 

increase the probability of unpredicted stoppages and influence manufacturing 

quality and production efficiency. 

3.3.1 Robot Precision Degradation 

More and more precise, profitable, and flexible robotic advances are fast-

tracking robot usage outside the ceaseless, high-throughput manufacturing 

processes [2][100][16]. Small batches and made-to-order manufacture are 

prevalent in robotic cells that necessitate design variations and modifications. 

Conventional teaching approaches are becoming outdated for they are tedious and 

inimitable (for instance, drilling thousands of holes on an airplane’s fuselage) [22]. 

Enhanced precision permits robotic technologies to empower further robotic offline 

programing that promotes substantial time and cost savings [79]. This growing 

ability similarly allows robotic advancement to be used across wide-ranging 

processes, like assembly, high precision welding, material subtraction, robotic 

machining, medicinal processes, and robotic 3D printing [140][117][109][23]. 

High-precision robots are becoming appreciated apparatuses for several of the 

abovementioned processes due to the considerable cost savings that can be 
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attained by these novel high-tech integrations [22][23]. The current call for high-

precision robots in these industrial processes has amplified the prominence of 

robotic precision sensing, and deterioration monitoring research [91]. 

 Equipment and Setup 

The 6 motion capture cameras were split between 2 separate 12-foot 

aluminum poles (Figure 3.18, page 94). They were then attached to the poles 

using general camera mounts and pointed in the same general direction. It should 

be noted the middle camera was placed on the opposite side of the pole as to 

attain a greater offset for more accurate tracking. The poles were then move to 

opposite corners of the lab. Each camera was then individually attached to a 

network hub placed at the bottom of each pole through an ethernet cable. One 

hub was daisy chained to the other one which was then connected to the laptop. 

4 IR reflectors were then stuck using 3M pads to the custom gripper on the GP8 

in a radial pattern (Figure 3.19, page 95). Table 3.2, on page 79, shows a detailed 

list of the equipment used in the experiment. 

 Calibration 

With the cameras placed in opposing corners and generally facing towards 

the center of the lab the calibration process could begin. In the Motive software 

the calibration button was selected. Various extraneous signals picked up by the 

cameras were masked as to be able to focus on the calibration wand. The software 

then prompted to begin wanding (Figure 3.20, page 96). The wand was moved all 
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around the lab in a controlled manner. Visual affirmation was given both by the 

cameras as a ring around the lens started to turn green and colorful path appeared 

in the camera view box in the software. After wanding, the software calculated 

calibration settings and an exceptional value was returned. The settings were then 

applied to the cameras. Next, the ground plane was calibrated by placing the 

calibration triangle on the ground and leveling it. By selecting the 3 points on the 

calibration triangle, the ground plane was set. Finally, a ridged body was created 

for the gripper motion capture points by using the software’s ridged body creator, 

simply by selecting the 4 points and selecting create. 

 Experiment and Results 

With the setup and calibration complete we could begin receiving data 

about the position and movement of the gripper. The position data was given 

relative to an origin created during the ground calibration step. A process was 

programmed for the GP8 using Siemens Process Simulate and uploaded to the 

robot. The process was then performed and recorded using the Motive Software 

(Figure 3.21, page 97). X, Y, Z position and error data was collected for each of 

the motion capture points and a generated center point of the ridged body. 

Furthermore, rotational data was collected. The data points were then exported 

as a CSV file and analyzed using excel. 
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3.3.2 Cloud-Based Object Detection Near Robot 

Beyond the automation pyramid proposed by ISA-95 [3], RAMI 4.0 [72], 

recent manufacturing paradigms for the integration of enterprise and control 

systems are decomposing to networked distributed services. For example, NIST 

service-oriented Smart Manufacturing architecture [137] proposed the utilization 

of a manufacturing service bus to combine different services, such as modeling 

and simulation (enterprise digital factory or digital twin) services, business 

intelligence, and computing/control ends (real factory). By which means, the 

business intelligence developed as a cloud service can be deployed to each of the 

manufacturing processes. Enabled by cloud services, the service-oriented 

architectures (SOA) become commercially deployable. IBM I4.0 proposed a 2-layer 

decentralized manufacturing system architecture (Figure 3.22, page 98): hybrid 

cloud layer and device layer. In this work, image uploading and result query using 

Watson™ IoT platform over the IBM cloud™ are enabled by representational state 

transfer API (RestAPI) to extend factory’s computing capability. Data are further 

utilized across various levels: edge, plant, and enterprise, facilitated by distributed 

computing power from the cloud [45]. 

IBM cloud™ is a set of cloud-based products for a wide range of IT 

applications, including database management, AI development, computing 

servers, IoT platforms, etc. [50]. It provides an environment that helps simplify 

data preparation processes and model building operations using a set of tools and 

machine/deep learning capabilities in the cloud. This work explores an AI 
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development use case using Watson Studio™ and presents the system integration 

process including image result queries and systematic deployment. Other products 

will be further explored in future work. 

Training deep learning models by Watson Studio™ is intuitive, simply by 

uploading the images and labelling them using web-based interfaces, shown in 

Figure 3.23 and Figure 3.24 (pages 99 and 100). The embedded cloud computing 

power trains the images or detects test images for regions of interest shaped by 

bounding boxes. Each derived model is designated with an API endpoint, which is 

used to query the model. Knowledge from the trained model is used to infer a 

result from uploaded images. The query results return a JSON file with a list of 

detected regions and their detection confidence scores. The authors embedded 

cloud-based object detection model in the monitoring devices by scripting the 

image query pipeline with URL syntax using Client URL (cURL) [18]. A near-

synchronized human detection result fed by IP security cameras is shown in Figure 

3.25 on page 101.  Furthermore, using OCR (optical character recognition), we are 

capable of extracting text from images, thus expanding the usage of computer 

vision inside a manufacturing cell. 

Computer vision algorithms are taught by feeding various examples of 

images already tagged with the needed contents to be identified by the model. 

Appropriate ratios of both positive and negative image sets are used for training 

the algorithm.  In the case below, we notice an open door that is being annotated, 

a negative case would be to train the model with images where the door is closed. 
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Other than the feature of classifying images from our cell, another capability 

provided by Watson Studio, that we are expanding on, is object localization. 

Region-Based Convolutional Neural Networks (R-CNNs) [93] have been 

traditionally used for handling object localization. This capacity would help the 

operator better understand and locate undesired objects inside the cell. 

Localization finds a specific object’s location within an image and displays the 

results as a bounding box around the detected object. The main challenge that 

arises with the use of this feature is the boundary identification problem that arises 

when an overlap of two or more objects occurs in an image. To remedy this 

problem, we are working on a solution that involves analyzing and mapping feeds 

from different views. 
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Table 3.1: Fault Occurrence and Signal Indicator form Experimental Data 

Time 

Stamp 

Sensor Signals in 

safe range 

Temperature 

Fault 

Vibration 

Fault 

Leaking 

Fault 

T1 
S1=True, S2=True, 

S3=True… 
   

T2 
S1=False, S2=True, 

S3=True… 
Detected   

T3 
S1=True, S2=True, 

S3=False… 
  Detected 

… … … … … 

Tn 
S1=False, S2=True, 

S3=False… 
Detected  Detected 

 

Table 3.2: Equipment used for tracking robot precision degradation 

Equipment Comment 

1 Robot with custom gripper tool Yaskawa GP8 Robot 

6 motion capture cameras OptiTrack PrimeX 13W 

2 network hubs and 8 ethernet cables  

Laptop with motion capture software OptiTrack Motive 

Desktop with virtual commissioning 

software 

Process Simulate 

Calibration tools OptiTrack Calibration Wand (CWM-

250) and Triangle (CS-200) 

4 IR reflectors   Motion Capture Markers - OptiTrack 
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Figure 3.1: Chapter Organization 

 

 

Figure 3.2: Planned Design for System Health Monitoring 

 

 

Figure 3.3: Current Platform: (a) ProcessSim View, (b) Actual View 
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Figure 3.4: Planned Design 
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Figure 3.5: Top view of the cell design with Material Handling, Assembly, and 
Inspection Areas 
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Figure 3.6: Data Flow between proposed Virtual-Physical-Scheduler System Ends 
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Figure 3.7: Computing Architecture 



www.manaraa.com

 

86 

 

Figure 3.8: Digitalization of control loops in physical and virtual robot platforms - 
Robot signals hardware control loop 
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Figure 3.9: Digitalization of control loops in physical and virtual robot platforms - 
Virtual cell control loops by Hardware-in- the-loop (PLC as controller) and 
Software-in-the-loop (PLCSIM as controller) 
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Figure 3.10: Local HMI screen 
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Figure 3.11: Remote human intervention screen 

 

 

Figure 3.12: Sensors used on the Motor-Driven Gripper 

 



www.manaraa.com

 

90 

 

Figure 3.13: Sensors Used on Pneumatic Gripper 
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Figure 3.14: Detection of Empty Grip 
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Figure 3.15: Detection of Slip in the Grip 
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Figure 3.16: Cavitation Detection. (a) Motor DE, (b) Casing 

 

Cavitation 

Cavitation 
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Figure 3.17: Gearbox fault detection. (a) Output 
Duplex Bearing. (b) Output Roller Bearing. (c) 
Input Roller Bearing 
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  Figure 3.18: 2 poles with Motion Capture Cameras mounted 
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Figure 3.19: GP8 with motion capture balls attached to gripper 
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Figure 3.20: Calibration wand (left) and Calibration Triangle (right) 
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Figure 3.21: Visual representation of capture area within Motive 
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Figure 3.22: IBM I4.0 cloud-enabled smart manufacturing architecture [45] 
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Figure 3.23: Define object classes for detection in Watson Studio™ 
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Figure 3.24: Region annotation by bounding boxes in Watson Studio™ 
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Figure 3.25: Integrating visual recognition into the cell for an alien object detection 
task 
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CHAPTER 4 

CONCLUSION AND FINAL REMARKS

4.1 CONCLUSION 

In this work, a novel approach is proposed to utilize digital transformation 

simulation and communication technologies to create virtual counterparts of robot 

manufacturing systems, on which the embedding of Big Data techniques into 

commonly used industrial robots, PLC function blocks, and event-driven controls 

at run-time is realized by this work. In addition, successful system integration of 

the robotic cell facilitates a general architecture of semantic-aware M2M 

communications by adding subsystems as communication layers.  

The contribution of this work is primarily in the following aspects: (1) High-

fidelity Virtual Commissioning platforms created by Siemens Tecnomatix Process 

Simulate are used as virtual environments to accommodate the model 

implementation, where system components are defined, simulated, and 

synchronized with live signals. After this offline programming process, generated 

robot programs can be directly transferred to physical robot systems without 

intermediate translations. (2) After construction of the virtual environment, system 

communications are implemented on both virtual and physical pathways. 
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“Software-in-the-loop” and “Hardware-in-the-loop” testing methods are discussed 

to be the baseline of virtual commissioning control loops depending on either the 

virtual cell is controlled by virtual or physical controller. Then, an application to 

enable IIoT for remote human intervention via customized OPC clients is 

presented. (3) An industrial virtual commissioning platform greatly augments the 

power of data analytics by interfacing through sensors and actuators with 

industrial simulation and automation software. 

4.2 FUTURE WORK 

The future work will focus on applying this methodology on more diverse 

manufacturing tasks and material flows, including collaborative assembly jobs, 

visual inspection, optimized rework, and continuous movement tasks. Dynamic 

feedback signals and high-dimensional manufacturing data will be automatically 

fed into the model to train, such as analog plant signals, product part CAD feature 

information, and machine vision inputs. Sensor signals from force sensors, motor 

voltages, robot monitors, thermal cameras, and environmental condition 

monitoring sensors will be used to connect to such systems so that more accurate 

real-time plant descriptions can be collected digitally. These manufacturing 

knowledges can also be shared between stakeholders with the proposed IIoT 

platform for even smarter decision-makings. Such attempts have the potential to 

enhance the use digital transformation technologies and approaches towards fully 

automated smart manufacturing systems, and delivering manufacturing 

intelligence driven by data from systems, processes. 
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4.3 SITUATION RESEARCH 

The study of multimodal robotic health through IIoT, data analytics, and 

virtual commissioning represents an overall goal of Future Factories research 

undertaken at the University of South Carolina’s McNair Center in the neXt Future 

Factories laboratory. This research complements a wide array of research topics 

covering different points of view in this field. These other areas of research attempt 

to (1) better understand and recognize mechanical features [37] and linking it to 

manufacturability analysis for additive manufacturing [120], (2) use machine 

learning for robotic inspection [101] and for feature recognition [119], (3) create 

digital twin driven manufacturing plants [134] and smart robotic assembly 

platforms [106], (4) create a comprehensive CPS product lifecycle environment 

[98] [66] while better understanding part criticality in inventory management 

[103] through better supplier risk assessment techniques [104][102].  
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